Iodine-Iodine Interactions in Dialkyldiiodophosphonium Iodides and Triiodides

Volkmar Stenzel, Jörg Jeske, Wolf-Walther du Mont,* and Peter G. Jones

Institut für Anorganische und Analytische Chemie der Technischen Universität Braunschweig, Hagenring 30, D 38106 Braunschweig, Germany

Received March 16, 1995[®]

Reactions of dialkyldiiodophosphanes R₂PI, **1** (**1a**, R = *t*-Bu; **1b**, R = *i*-Pr; **1c**, R = Et) with various molar ratios of iodine were followed by NMR spectroscopy in solution and by X-ray crystal structure determinations of solid compounds R₂PI_n (*n* = 3, 4, 5). In solution at room temperature, rapid iodine transfer reactions occur between P^V-compounds R₂PI₃ (**2a**, R = *t*-Bu; **2b**, R = *i*-Pr; **2c**, R = Et) and the iodophosphanes. With increasing iodine content of R₂PI₃/I₂ systems, decreasing I···I interactions between cations (R₂PI₂⁺) and anions (I⁻ > I₃⁻) are indicated by solution NMR data such as ³¹P downfield shifts and increasing ³J(³¹P, ¹H). Cation-anion interactions are weakest when I⁻ anions are trapped as AlI₄⁻ anions by addition of aluminum triiodide (**5a**, *t*-Bu₂PI₂⁺ AlI₄⁻). Structure determinations of *t*-Bu₂PI₃ (**2a**, C₈H₁₈I₃P, orthorhombic, space group *Pmmn*, *a* = 9.208(2) Å, *b* = 11.482(2) Å, *c* = 6.970(2) Å, *Z* = 2; μ_2 -bridging I⁻), (*i*-Pr₂PI₂)₂(I)(I₃) (**3b**, C₁₂H₂₈I₈P₂, monoclinic, space group P2₁/n, *a* = 11.919(3) Å, *b* = 10.156(3) Å, *c* = 25.214(5) Å; $\alpha = 90^{\circ}$, $\beta = 98.48(2)^{\circ}$, $\gamma = 90^{\circ}$, *Z* = 4, μ_3 -bridging I⁻, terminal I₃⁻) and Et₂PI₅ (**4c**, C₄H₁₀I₅P, monoclinic, space group P2₁/n, *a* = 8.294(4) Å, b = 14.516(5) Å, c = 12.315(5) Å, $\alpha = 90^{\circ}$, $\beta = 91.73(3)^{\circ}$, $\gamma = 90^{\circ}$, *Z* = 4, bridging I₃⁻) reveal that within the chain structures of **2a**, **3b** and **4c**, R₂PI₂⁺ cations are significantly stronger than R₂PI₂⁺···I₃⁻ interactions. In each case, both iodine atoms of the R₂PI₂⁺ cations act as *soft* acceptors *via iodine* toward *soft* I⁻ and/or I₃⁻ anions.

Introduction

Tertiary amines, phosphanes and arsanes are known to react with 1 equiv of iodine to give compounds R_3E-I-I with linear moieties E-I-I. In each case, the donor molecule competes with an iodide anion for coordination with the central iodine atom.

 $\mathbf{R}_{3}\mathbf{E} \rightarrow \mathbf{I}^{+} \leftarrow \mathbf{I}^{-} \quad \mathbf{R}_{3}\mathbf{E} \rightarrow \mathbf{I}^{+} \leftarrow \mathbf{I}^{-} \rightarrow \mathbf{A} \quad \mathbf{I}_{2}(\mathbf{R})\mathbf{P} \rightarrow \mathbf{I}^{+} \leftarrow \mathbf{I}^{-}$

 $R_3E =$ donor; A =acceptor/electrophile

Increasing donor strengths of R_3E molecules toward the *soft* acceptor I_2 lead to stronger E-I and weaker I-I bonds (Me₃N¹ < Ph₃As² < Ph₃P³ < *t*-Bu₃P⁴). Hydrated I⁻ anions interact much less with the iodine atoms of *t*-Bu₃PI⁺ cations (*t*-Bu₃PI₂/H₂O) than I⁻ in aprotic solvents (*t*-Bu₃PI₂ in CH₂Cl₂ or CHCl₃);^{4.5} in iodophosphonium salts with anions other than I⁻, P–I bond strengths increase with decreasing donor properties of the anions,⁶⁻¹⁰ whereas donor properties of the iodide anion can be diminished by coordination with electrophiles A (such as I₂ and AlI₃). Because of their poor donor properties toward molecular iodine, phosphorus triiodide (PI₃) and alkyldi-

- Strømme, K. O. Acta. Chem. Scand. 1959, 13, 268-274.
 Mc Auliffe, C. A.; Beagley, B.; Gott, G. A., Mackie; A. G., MacRory, P. P.; Pritchard, R. G. Angew. Chem. 1987, 99, 237.
- (3) Godfrey, S. M.; Kelly, D. G.; Mc Auliffe, C. A.; Mackie, A. G.; Pritchard, R. G., Watson, S. M. J. Chem. Soc., Chem. Commun. 1991, 1163.
- (4) du Mont, W.-W.; Bätcher, M.; Pohl, S.; Saak, W. Angew. Chem. 1987, 99, 945; Angew. Chem., Int. Ed. Engl. 1987, 26, 912.
- (5) du Mont, W.-W.; Kroth, H. J. J. Organomet. Chem. 1976, 113, C35.
- (6) Stenzel, V. Ph.D. Thesis, Technische Universität Braunschweig, 1994.
- (7) Pohl, S. Z. Anorg. Allg. Chem. 1983, 498, 15 and 20.
- (8) Cotton, F. A.; Kibala, P. A. J. Am. Chem. Soc. 1987, 109, 3309.
- (9) Kuhn, N.; Jüschke, R.; du Mont, W.-W.; Bätcher, M.; Bläser, D.; Boese, R. Z. Naturforsch., B, 1989, 44, 9-12.
- (10) Bätcher, M.; du Mont, W.-W.; Pohl, S.; Saak, W. XI International Conference on Phosphorus Chemistry, Tallinn; 1989; Abstr. 1-23; Phosphorus, Sulfur Silicon, 1990, 49/50, 147-150.

iodophosphanes RPI₂ cannot compete in solution with iodide anions for coordination with the I⁺ cation, but alkyltetraiodophosphorus compounds RPL4 are stable in the solid state because of cooperative cation-anion I · · · I interactions leading to layer structures (MePI₄, *i*-PrPI₄) or a three-dimensional network (t-BuPI₄).¹¹ In each case, alkyltriiodophosphonium ions \mathbf{RPI}_3^+ are tripod acceptors μ_3 -bridged by iodide anions. With respect to donor properties toward molecular iodine, iododialkylphosphanes R₂PI should be intermediate between tertiary phosphanes and alkyldiiodophosphanes RPI2. Several iododiorganylphosphanes R₂PI are known to react with iodine to give stable yellow products of 1:1 stoichiometry (R_2PI_3) and colored compounds of higher iodine content, but there is still a complete lack of structural evidence for the mode of cation-anion interactions in $R_2PI_2^+$ salts,¹² nor has the solution behavior of R₂PI/I₂ systems been satisfactorily studied. To answer these questions, we studied R_2PI/I_2 (R = t-Bu, i-Pr, Et) reactions in solution by NMR and determined the first solid state structures of compounds R_2PI_x (x = 3, 4, 5).

Experimental Section

The experiments were carried out under dry nitrogen as inert gas and in dry and deoxygenated solvents. All ¹H, ¹³C, ²⁷Al, and ³¹P NMR spectra were obtained on Bruker AC 200 spectrometers operating at 200.1 MHz (¹H), 50.32 MHz (¹³C), 52 MHz (²⁷Al), and 81 MHz (³¹P). Chemical shifts are given with respect to TMS (¹H, ¹³C), $[Al(H_2O)]_6]^{3+}$ and H₃PO₄. Infrared spectra were obtained on a Bruker FT IR and Raman spectrometer at the Institut für Anorganische and Analytische Chemie, Technische Universität Clausthal. Elemental analyses were carried out on a Calo Erba instrument. For the determination of melting points, sample were heated in sealed glass capillaries in a Büchi 535 instrument. Dialkylphosphorus iodides R₂PI₃, (R₂PI₂)₂⁺ I⁻, I₃⁻ and R₂PI₅ (**2a-c, 3a, 3b,** and **4c**) were prepared by addition of iodine in CH₂Cl₂ to CH₂Cl₂ solutions of R₂PI. **2-4** gave satisfactory elemental analysis. **2a,b** are slightly soluble, **2c** is nearly insoluble, **3a,b** and **4c**

(12) Gomelya, N. D.; Feshenko, N. G. Zh. Obshch. Khim. 1987, 57, 1702.

[®] Abstract published in Advance ACS Abstracts, September 1, 1995.

 ⁽¹¹⁾ du Mont, W.-W.; Stenzel, V.; Jeske, J.; Jones, P. G.; Sebald, A.; Pohl, S.; Saak, W.; Bätcher, M. Inorg. Chem. 1994, 33, 1502-1505.

Table 1.Crystallographic Data for 2a, 3b, and 4c

	<i>t</i> -Bu ₂ PI ₃ (2a)	$(i-Pr_2PI_2)^+{}_2I^-,I_3^-$ (3b)	Et ₂ PI ₅ (4c)
formula	C ₈ H ₁₈ I ₃ P	$C_{12}H_{28}I_8P_2$	C ₄ H ₁₀ I ₅ P
fw	525.89	1249.48	723.59
space group	Pmmn	$P2_1/n$	$P2_1/n$
a, Å	9.208(2)	11.919(3)	8.294(4)
b, Å	11.482(2)	10.156(3)	14.516(5)
c, Å	6.970(2)	25.214(5)	12.315(5)
β , deg		98.48(2)	91.73(3)
$V, Å^3$	736.9(3)	3018.8(13)	1482.0(11)
Z	2	4	4
T, °C	-130	-95	-100
$\mu, {\rm mm}^{-1}$	6.433	8.323	10.557
d_{calcd} Mg/m ³	2.370	2.749	3.243
R ^a	0.0179	0.0249	0.0458
R ^b	0.0454	0.0664	0.1507
-			

$${}^{a}R = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b}R_{w} = [\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}]]^{1/2}$$

are moderately soluble in CH_2Cl_2 , which is suitable for recrystallizations. **5a** was prepared by addition of $A1I_3$ to a CS_2 suspension of *t*-Bu₂PI₃.

2a. Starting materials: 3.2 g of *t*-Bu₂PI (11.8 mmol), 3.0 of g I₂ (11.8 mmol). Yield: 1.79 g (29%) of yellow crystals, mp 176 °C dec. Anal. Calcd for C₈H₁₈I₃P (525.9 g/mol): C, 18.3; H, 3.4; I, 72.4; P, 5.9. Found: C, 18.0; H, 3.5. ³¹P NMR (CD₂Cl₂): δ 61.1. ¹H NMR: δ 1.55 (d), ³J(PH) = 19.1 Hz. IR [CsI] (600-120 cm⁻¹): 568 (w), 481 (vs), 465 (m), 222 (vw), 166 (w), 126 (m) cm⁻¹. RE (600-20 cm⁻¹): 567 (vw), 481 (w), 462 (w), 384 (w, b), 372 (m), 299 (w, b), 272 (vw, b), 222 (vs), 148 (vs), 124 (vs), 100 (vs), 79 (vw), 60 (s).

2b. Starting materials: 6.19 g of *i*-Pr₂PI (25.4 mmol), 6.44 g of I₂ (25.4 mmol). Yield: 8.1 g (64%) of yellow crystals, mp 138 °C dec. Anal. Calcd for C₆H₁₄I₃P (497.9 g/mol): C, 14.5; H, 2.8; I, 76.5; P, 6.2. Found: C, 14.3; H, 2.9. ³¹P NMR (CH₂Cl₂): δ 35.0. ¹H NMR: δ 1.25 (d,d), ³J = (PH) = 20.35 Hz, ³J(HH) = 6.74 Hz (CH₃); δ 2.32 (d, sept.) ²J(PH) not resolved, ³J(HH) = 6.74 Hz (CH). RE (600-20 cm⁻¹): 495 (w), 392 (w), 378 (vw), 364 (m), 303 (w), 265 (w), 223 (s), 135 (s), 92 (vs), 61 (w).

2c. Starting materials: 7.3 g of Et₂PI (31.5 mmol), 8 g of I₂ (31.5 mmol). Yield: 4.3 g (29%) of yellow crystals, mp 145 °C dec. Anal. Calcd for C₄H₁₀J₃P (496.81): C, 10.2; H, 2.1; I, 81.1; P, 6.6. Found: C, 10.2; H, 2.2. RE (600-20 cm⁻¹): 439 (m), 373 (m), 315 (m), 253 (m), 230 (m, b), 170 (w,b), 141 (w), 99 (vs), 90 (s), 68 (m).

3a. Starting materials: 3.99 of g t-Bu₂PI (10.7 mmol), 5.45 g of I₂ (21.4 mmol). Yield: 0.9 g (12.9%) of brown crystals, mp 108 °C dec. Anal. Calcd. for C₁₆H₃₆I₈P₂ (1305.7 g/mol): C, 14.7; H, 2.7; I, 77.8; P, 4.7. Found: C, 14.4; H, 2.4. ³¹P NMR (CH₂Cl₂): δ 80.9. ¹H NMR: δ 1.66 (d), ³J(PH) = 22.0 Hz.

3b. Starting materials: 1.5 g of *i*-Pr₂PI₃ (3.0 mmol), 0.8 g of I₂ (3.0 mmol). Yield: 1.32 g (70.4 %) of violet crystals, mp 151 °C dec. Anal. Calcd for C₁₂H₂₈I₈ (1249.6 g/mol): C, 11.5; H, 2.2; I, 81.2; P, 5.0. Found: C, 11.4; H, 2.2. ³¹P NMR (CH₂Cl₂): δ 33.2. ¹H NMR: δ 1.32 (d,d) ³J(PH) = 24.4 Hz, ³J(HH) = 6.72 Hz (CH₃); δ 2.80 (d, sept.), (PH) = 0 Hz, ³J(HH) = 6.72 Hz (CH). RE (600-20 cm⁻¹): 495 (vw), 391 (w), 378 (w), 372 (w), 302 (vw), 268 (w,b), 231 (s), 139 (s), 125 (w), 111 (vs), 95(m), 71 (vw), 65 (vw), 57 (vw).

4c. Starting materials: 2.2 g of Et₂PI₃ (4.68 mmol), 1.19 g of I₂ (4.68 mmol). Yield: 2.78 g (82%) of violet crystals, mp 89 °C dec. Anal. Calcd for C₄H₁₀I₅P (723.6): C, 6.6; H, 1.4; I, 87.7; P, 4.3. Found: C, 6.6; H, 1.4. ³¹P NMR (CH₂Cl₂): δ -11.6. ¹H NMR: d 1.36 (d, t) ³J(PH) = 29.2 Hz, ³J(HH) = 7.4 Hz (CH₃); δ 3.31 (d,q); ²J(PH) = 7 Hz, ³J(HH) = 7.4 Hz (CH₂). RE (600-20 cm⁻¹): 440 (w), 368 (w), 339 (vw, b), 316 (w), 281 (vw), 252 (w), 225 (w, b), 142 (m), 124 (w), 108 (vs), 68 (w).

5a. Starting materials: 1.61 g of AlI₃ (3.94 mmol), 1.54 g of *t*-Bu₂PI₃ (2.93 mmol). Yield: 1.97 g (72%, related to *t*-Bu₂PI₃) of light brown crystals, mp 150 °C dec. Anal. Calcd for C₈H₁₈AlI₆P (933.5 g/mol): C, 10.3; H, 1.9; Al, 2.9; I, 81.6; P, 3.3. Found: C, 9.3; H, 1.7. ³¹P NMR: (CH₂Cl₂) δ 96.6. ¹H NMR: δ 1.64 (d), ³J(PH) = 24 Hz. ²⁷Al NMR: δ -26.0.

Crystal Data. 2a. A red prism $(0.80 \times 0.15 \times 0.04 \text{ mm})$ was mounted in inert oil. Using Mo K α radiation on a Stoe STADI4

Table 2. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters $(\mathring{A}^2 \times 10^3)$ for 2a, 3b, and 4c where U(eq) Is Defined as One-Third of the Trace of the Orthogonalized U_{ij} Tensor

	x	У	z	U(eq)				
$2a, t-Bu_2PI_3$								
I1	5354.0(3)	2500	6668.1(4)	18.9(1)				
I2	2500	2500	9669.8(6)	21.7(2)				
Р	7500	2500	4603(2)	15.0(6)				
C1	7500	3910(3)	3230(6)	19(2)				
C(2)	6138(3)	4003(3)	1990(5)	32(2)				
C(3)	7500	4890(3)	4723(7)	27(2)				
		3b. $(i-\Pr_2 PI_2)_2^+I^-$.]	[3=					
I1	6512.5(3)	-2102.3(4)	2942.5(1)	26.6(1)				
I2	6031.4(3)	-94.5(4)	1572.5(1)	27.9(1)				
13	3441.1(3)	2996.3(4)	1328.6(1)	28.4(1)				
I(4)	2751.7(3)	4677.0(4)	-89.5(1)	26.8(1)				
15	6859.9(3)	2606.3(4)	846.6(1)	28.4(1)				
Ĩ6	709.2(3)	8129.1(4)	1523.9(2)	32.6(1)				
17	1795 9(4)	7955 4(4)	577 2(2)	36 1(1)				
18	-3464(4)	8277 0(4)	2504 6(2)	37.0(1)				
P1	5451 7(12)	-19752(14)	2049 0(5)	22 2(3)				
P2	2286 4(12)	2873.0(14)	459 8(5)	21.2(3)				
CI	3952(5)	-1833(6)	2100(2)	27 9(13)				
C^2	3539(5)	-3077(6)	2357(3)	40(2)				
C3	3695(5)	-585(6)	2398(3)	39(2)				
C_4	5731(5)	-3487(6)	1686(2)	27 5(13)				
Č	4979(6)	-3521(6)	1135(2)	37 0(15)				
C6	6998(5)	-3612(7)	1648(3)	37 8(15)				
C7	796(5)	3000(6)	548(2)	28 0(12)				
	536(6)	4272(6)	816(3)	$\frac{20.0(12)}{40(2)}$				
	431(5)	1767(6)	834(3)	36 8(15)				
C10	2572(5)	1316(6)	1/2(2)	28 2(13)				
C10	1779(5)	1122(6)	-374(2)	20.2(15)				
C_{12}	2814(5)	11/9(7)	95(2)	30(2)				
C12	3014(3)	1146(7)	85(5)	39(2)				
	0000 ((0)	4c , Et_2PI_5		20 ((2)				
11	9399.6(9)	6811.6(5)	3534.7(6)	38.6(2)				
12	4816.2(9)	6647.4(5)	3681.1(7)	36.7(2)				
13	2045.6(9)	4890.8(5)	3901.4(6)	37.0(2)				
14	2513.2(8)	4377.8(5)	1593.4(6)	34.4(2)				
15	2923(2)	3893.8(6)	-617.1(8)	63.4(3)				
۲ ۲	7000(3)	7724(2)	3542(2)	31.4(6)				
CI	6713(13)	8383(8)	2305(10)	37(2)				
C2	8128(17)	9004(9)	2050(12)	51(3)				
C3	7077(15)	8469(7)	4720(9)	35(2)				
C4	7222(18)	7950(8)	5806(11)	48(3)				

diffractometer 2851 intensities were measured to $2\theta_{max} = 55^{\circ}$, of which after absorption corrections 926 were unique ($R_{int} 0.0365$) and 925 used for all calculations (38 parameters).

3b. A red prism $(0.40 \times 0.28 \times 0.28 \text{ mm})$ was mounted as above on a Siemens R3 diffractometer. Using Mo K α radiation, 7449 intensities were measured to $2\theta_{\text{max}} = 50^{\circ}$, of which after absorption corrections 5335 were unique (R_{int} 0.0267) and 5328 used for all calculations (60 restraints, 208 parameters).

4c. A black cut needle $(0.60 \times 0.20 \times 0.02 \text{ mm})$ was mounted as above (3b). A total of 5666 intensities were measured to $2\theta_{max} = 55^{\circ}$, of which after absorption corrections 3402 were unique (R_{int} 0.0913) and 3377 used for all calculations (93 parameters). The structures were solved by direct methods (SHELXS-86) and refined anisotropically on F^2 (SHELXL-92). For details see Tables 1 and 2.

Results

NMR Investigation of the Stepwise Iodination of Dialkyliodophosphanes (R_2PI/I_2 Systems). The reactions of iodophosphanes R_2PI , 1a-c (a, R = t-Bu; b, R = i-Pr; c, R =Et), with iodine was followed by ³¹P- and ¹H-NMR spectroscopy. Iodine was added stepwise to dichloromethane solutions of the iodophosphanes and to dichloromethane solutions or suspensions of R_2PI_3 compounds (Table 3).

Reactions of Iodine with Di-*tert***-butyliodophosphane (1a).** When a very small amount of iodine is added to a solution of

Table 3. NMR Data for R₂PI/I₂ Systems (CH₂Cl₂/CD₂Cl₂ Solvent)

	R₂PI	R2PI/R2PI3	R ₂ PI ₃	$(R_2PI_2)_2^+, I^-, I_3^-$	$R_2PI_3 + I_2$ (satd)			
R = t - Bu								
δ(³¹ P)	136.7	135°	61.1%	80.9	87.5			
δ('H)	1.28 d	1.32 d	1.55 d	1.66 d	1.64 d			
3J(P,H)	12.0	12.2	19.1	22.0	23.8			
$\mathbf{R} = i \cdot \mathbf{P} \mathbf{r}$								
$\delta({}^{3}\mathbf{P})$	112.0	105.6ª	35.5 ^b	33.2	47.2			
ð(H[CH])	1.15 d, d	1.16 d, d	1.25 d, d	1.32 d, d	1.38 d, d			
³ J(PH)	13.9	14.1	20.4	24.4	26.7			
ð(¹ H[CH])	1.86 d, sept	1.91 d, sept	2.32 d, sept	2.80 d, sept	2.81 d, sept			
² J(PH)	9.77	8.33	0-	0-	2			
³ J(HH)	6.88	7.03	6.74	6.72	6.68			
$\mathbf{R} = \mathbf{E}t$								
δ(³¹ P)	83.6 (toluene)	84.1 ^a (CH ₂ Cl ₂)			$-11 (CH_2Cl_2)^{d}$			
$\delta(^{1}H[CH_{3}])$	1.14	1.46			1.36			
³ J(PH)	14.87	14.98			29.19			
$\delta(^{1}H[CH_{2}])$	1.86	2.30			3.31			
$^{2}J(PH)$	9.05	7.5			7			
³J(HH)	7.53	7.5			7.4			

^a Line width 100-250 Hz. ^b Line width 500 Hz (2a) and 900 Hz (2b), c < 1 Hz (not resolved). ^d Et₂PIs for R = Et.

1a, the ³¹P-NMR signal broadens considerably whereas the ¹H NMR doublet does not; the ¹H- and ³¹P-NMR signals are shifted slightly to lower field, compared with 1a, and the coupling constant ³J(³¹P, ¹H) increases slightly. Separate NMR signals for the reaction product are not observed. Apparently, under these conditions rapid iodine transfer between dialkyliodophosphane molecules occurs; such rapid iodine cation transfer is known to occur in various R₃PI⁺/PR₃ or R₃PI₂/PR₃ systems at room temperature in solution.⁴⁻⁶ Adding about ¹/₂ equiv of iodine to the dichloromethane solution of 1a leads to precipitation of yellow t-Bu₂PI₃ (2a); the ³¹P-NMR signal of the remaining 1a in solution again appears broad and slightly shifted to lower field (Table 3); running the spectrum at -60 °C did not lead to decoalescence of the ³¹P-NMR signal. The 1:1 reaction of 1a with I_2 furnishes 2a as a yellow solid that is sparingly souble in tetrahydrofuran, trichloromethane and dichloromethane (solubility in CH_2Cl_2 : 0.8 g·L⁻¹). 2a shows a very broad ³¹P-NMR signal at +61 ppm (75 ppm upfield from 1a), the increase of ${}^{3}J({}^{31}P, {}^{1}H)$ from 1a to 2a is consistent with four-coordination of phosphorus in 2a.

The X-ray crystal structure determination of 2a reveals that di-tert-butyldiiodophosphonium ions (containing tetrahedrally coordinated phosphorus) are bridged by two-coordinated iodide anions leading to a zigzag chain polymer (Figure 1). Both iodine atoms adjacent to phosphorus are linearly coordinated (177.5°), whereas the angle at the bridging iodide anions is 102.9°. With help of the rules of VSEPR theory, this geometry within the chains of 2 allows the I · · · I contacts (3.359 Å) to be assigned to donor-acceptor interactions involving the bridging two-coordinated iodide ions as [8-I-2] donors and the twocoordinated iodine atoms adjacent to phosphorus as [10-I-2] acceptors. The cation-anion I •• I interactions are associated with significant elongation of the P-I bonds (2.445 Å), compared with essentially isolated iodophosphonium ions (2.40 \pm 0.01 Å).⁷⁻¹⁰ The environment of the bridging iodide atoms of 2a is closely related to that of the central iodide anion of the known cation $[(n-Bu_3PI)_2I]^+$ ¹³

Addition of further amounts of iodine to suspensions containing 2a leads to brown solutions/suspensions, which become darker with increasing amounts of iodine. Such solutions give strong and sharp ³¹P-NMR singlets that are shifted to lower field, compared with 2a. ¹H-NMR doublet signals are further shifted

Figure 1. Packing diagram of 2a. Selected distances (Å) and angles (deg): II - P 2.4448, II - I2 3.359, P - C1 1.880; P - II - I2 177.55, II - I2 - IIC 102.95, II - P - IIA 107.85. Atoms II, C1, and C3 occupy special positions of *m* symmetry, and I2 and P, of *mm2* symmetry. Symmetry operations: (A) 1.5 - x, 0.5 - y, z; (B) 1.5 - x, y, z; (C) 0.5 - x, 0.5 - y, z.

downfield and ${}^{3}J({}^{31}P,{}^{1}H)$ increases further, compared with 1a and 2a; maximum values $(\delta({}^{31}P) = + 87.5 \text{ ppm }{}^{3}J({}^{31}P,{}^{1}H) = 23.8 \text{ Hz}$, see Table 3) were obtained in the presence of a saturated solution of iodine in dichloromethane. Crystallization from 1:2 1a/I₂ or 1:1 2a/I₂ solutions furnished brown crystals of t-Bu₂PI₄ (3a), which are moderately soluble in dichloromethane. 3a is obviously a mixed iodide, triiodide (t-Bu₂PI₂)₂(I)(I₃); attempts to isolate crystals of the bis(triiodide) t-Bu₂PI₃ (4a) failed even in the presence of excess iodine. The fact that all NMR parameters of t-Bu₂PI₃/I₂ systems are dependent on the iodine content in solution suggests that iodine addition leads to consumption of iodide anions by triiodide formation. Since triiodide is a weaker donor toward iodophosphonium cations, the overall cation-anion soft-soft interactions decrease with increasing addition of iodine. Retrosynthetically,

⁽¹³⁾ Mc Auliffe, C. A.; Godfrey, S. M.; Mackie, A. G.; Pritchard, R. G. Angew. Chem. 1992, 194, 932.

Figure 2. (a) Helical structure of 3b. The helix is built up via interactions $12 \cdot \cdot 15 \cdot \cdot 11$. On the bottom left is seen a side chain (see text). Selected distances (Å) and angles (deg): $11-P1 \cdot 2.419$, $12-P1 \cdot 2.411$, $13-P2 \cdot 2.412$, $14-P2 \cdot 2.410$, $11-I5D \cdot 3.3803$, $12-I5 \cdot 3.5188$, $I3B-I8C \cdot 3.4531$, $I5-I4B \cdot 3.4251$, $I6C-I7C \cdot 2.8844$, $I6C-I8C \cdot 2.9388$; $P-I-I \cdot 173-176$, $11A-I5-I4B \cdot 109.03$, $12-I5-I4B \cdot 17.57$, $11A-I5-I2 \cdot 76.46$, $17C-I6C-I8C \cdot 178.54$. Symmetry operations: (A) 1.5 - x, 0.5 + y, 0.5 - z; (B) 1 - x, 1 - y, -z; (C) 0.5 + x, 1.5 - y, -0.5 + z; (D) 1.5 - x, -0.5 + y, 0.5 - z; (E) x, -1 + y, z. (b) Backbone of the helical structure of **3b**.

increasing cation—anion *soft—soft* interaction leads to ³¹P- and ¹H-NMR upfield shifts and decreasing magnitude of ³J(³¹P,¹H). Thus the question arises if the presence of weakly nucleophilic triiodide counterions has already an impact (upfield shift) on the ³¹P nucleus of the *t*-Bu₂PI₂⁺ cation. To obtain reference data for a nearly "free" *t*-Bu₂PI₂⁺ cation, we prepared *t*-Bu₂PI₂⁺ AlL₄⁻ (5a) from 2a with aluminum triiodide. As expected, the ³¹P NMR singlet of 5a appears even further downfield (+96.6 ppm) than that of solutions containing 3a/4a (87.5 ppm). The ²⁷Al NMR signal of 5a appearing in the range of "free" AlL₄⁻ (-26 ppm)¹⁴ confirms that in solution the symmetry of the counterion in 5a is not disturbed by cation—anion interactions.

$$\begin{array}{c} \mathbf{R}_{2}\mathbf{PI} + \mathbf{I}_{2} \rightarrow \mathbf{R}_{2}\mathbf{PI}_{3} \\ \mathbf{1} \qquad \mathbf{2} \end{array}$$
(1)

$$\begin{array}{c} R_2 P^* I_3 + R_2 P I \rightleftharpoons R_2 P I_3 + R_2 P^* I \\ 2^* & 1 & 1 & 2^* \end{array}$$
(2)

$$2R_2PI_3 + I_2 \rightarrow (R_3PI)_2(I)(I_3)$$
(3)
2 3

$$\begin{array}{c} R_2 P I_3 + A I I_3 \rightarrow (R_2 P I_2)(A I I_4) \\ 2a & 5a \end{array}$$
 (5)

$$R = t$$
-Bu, a; *i*-Pr, b; Et, c

Reactions of Iodine with Iododiisopropylphosphane (1b). As in the previous case (1a), mixtures of 1b with iodine in dichloromethane solution in any ratio furnish one-peak ³¹P-NMR spectra: with minor amounts of iodine, line broadening and a slight downfield shift from 112.6 ppm (1b) to 105.6 ppm for 1b/I₂ above a precipitate of *i*-Pr₂PI₃ (2b) were observed. With a 1:1 ration of 1b and iodine, a weak and broad signal of 2b appeared at 35 ppm; with excess iodine a sharp and much stronger signal of (2b/3b/excess I₂) was resolved at 47 ppm. With increasing iodine content, the magnitude of ${}^{3}J({}^{31}P,{}^{t}H)$ increases, whereas the magnitude of ${}^{2}J({}^{31}P,{}^{t}H)$ goes through a minimum (1b, J = 9.8 Hz [probably negative]; 2b, 3b, J = not resolved; with excess I₂, J = 2 Hz). 2b was isolated as yellow crystals, sparingly soluble in dichloromethane (yellow solution); pure *i*-Pr₂PI₄ (3b) gave violet crystals that are moderately soluble in dichloromethane (brown solution).

The X-ray crystal structure determination of 3b (Figures 2 and 3) reveals that the compound consists of diiododisopropylphosphonium cations and iodide and triiodide anions. The *i*-Pr₂PI₂⁺ cations are present in two different environments: one (central atom P1) as part of helical chains from $i-Pr_2PI_2^+$ cations interacting with I⁻ anions, and the other (central atom P2) as part of side chains attached to the helices by further I...I interactions. The side chain *i*-Pr₂PI₂⁺ cations are also in I···I contact with terminal I3⁻ anions. Because of attachment of these side chains, all iodide anions 15 of the helical chains become μ_3 -bridging between three *i*-Pr₂PI₂⁺ cations. The coordination geometry of I5 is distorted between pyramidal and a T structure $(\angle I - I - I$ are 76.5 [within the helical chain], 109, and 171.6°); P-I-I angles are all between 173 and 179°, emphasising the acceptor character of the iodine atoms bonded to fourcoordinated phosphorus. Compared with the chain structure of 2a, all I •• I contacts within 3b are longer, and all P-I bonds within 3b are shorter (2.410-2.419 Å). The iodide anion is a much better donor than the triiodide anion toward iodophosphonium cations: becoming three-coordinated in 3b, the iodide

⁽¹⁴⁾ Kidd, R. G.; Truax, D. R. J. Am. Chem. Soc. 1968, 90, 6867.

Figure 3. Two adjacent chains of solid 4c. Selected distances (Å) and angles (deg): 11-P 2.391, 12-P 2.402, 11-13 3.5685, 12-13 3.4488; POA-12A-13 172.83, 12A-13-14 90.20, 11-13-12A 79.69, 15-14-13 179.34. Shortest contacts between chains (Å): 13-11B 4.212. Symmetry operations: (A) -1 + x, y, z; (B) 1 - x, 1 - y, 1 - z.

competes successfully with the triiodide, which is only a monodentate ligand towards the side chain $i-\Pr_2 PI_2^+$ cations of 3b.

Reactions of Iodine with Diethyliodophosphaue (1c). The 1:1 reaction with iodine provides yellow Et_2PI_3 (2c).¹⁵ The very low solubility of 2c in dichloromethane and carbon disulfide and possibly also line broadening precluded the determination of its ³¹P-NMR shift. In presence of a precipitate of 2c, 1c gives a broad signal at 84 ppm (Table 1). With one further equivalent of iodine, 2c provides the violet triiodide Et_2PI_5 4c (δ (³¹P) -11 ppm), moderately soluble in dichloromethane; adding excess iodine to solutions of 4c does not lead to a significant change of its NMR parameters. Consistent with four-coordination at phosphorus and only weak cation—anion soft—soft interactions, the magnitude of ${}^3J({}^{31}\text{P},{}^{1}\text{H})$ of 4c is nearly double (29.2 Hz) that of the phosphane 1c (14.9 Hz).

The X-ray crystal structure determination of 4c (Figure 3) reveals that the compound consists of chains of diethyldiiodophosphonium ions bridged by I·•·I contacts with triiodide ions, leading to a pleated ribbon structure (Figure 3) when weak I·•·I contacts (4.2 Å) between chains are considered.

The average I - I distance in the diiodophosphonium triiodide 4c is about 0.1 Å longer than in the mixed iodide triiodide 3b and nearly 0.2 Å longer than in the iodide 2a. The longer (weaker) I--- I interaction within 4c is reflected by comparatively strong ("undisturbed") P-I bonds [d(P-I): 2a > 3b > 4c]. Obviously, the nucleophilicity of the triiodide anion is not sufficient to lead to a significant destabilization of the P-I bonds by population of $\sigma^*(P-I)$ orbitals of two Et₂PI₂⁺ cations. The bridging iodine atom (I3) of 4c may, like the central iodide anion in the known cation $[(Ph_3PI)_2 I - I_2]^{+8}$, be regarded as a trigonalpyramidal iodide anion with strong coordination to an iodine molecule (I4, I5) and with weaker interaction with two acceptor iodine atoms of two different Et₂PI₂⁺ cations. The bridging trijodide ion of 4c (I-I 2.975 and 2.842 Å) is only a little more asymmetric than the terminal triiodide of 3b (I-I 2.939 and 2.884 Å). In agreement with this X-ray structural evidence, the "splitting" $(v_{as} - v_s)$ of the pair of I-I vibrations of trijodide ions in the Raman spectra is larger for the more asymmetric triiodide ion within solid 4c ($v_{as} - v_s = 34 \text{ cm}^{-1}$) than for the triiodide ion of solid 3b ($v_{as} - v_s = 28 \text{ cm}^{-1}$).

Summary

In iodophosphonium cations, each iodine atom attached to four-coordinated phosphorus behaves as a soft electrophile seeking contact with a soft nucleophile. To meet this requirement in dialkyldiiodophosphonium iodides, iodide anions have to act as μ_2 -bridging soft nucleophiles toward two of the dialkyldiiodophosphonium cations. Cation-anion soft-soft interactions between linear two-coordinated acceptor iodine atoms-bonded to tetracoordianted phosphorus-and angular two-coordinated iodide anions lead to the chain structure of 2a. Compared with iodide anions, trijodide anions are much weaker nucleophiles towards iodophosphonium ions. When addition of iodine to R₂PI₃ leads to consumption of a part of the iodide ions by triiodide formation, the remaining iodide ions have to bridge more than two $R_2PI_2^+$ cations. Thus, in 3b, iodide anions become μ_3 -bridging between three cations, whereas each triiodide anions acts as terminal donor towards a side chain R₂PI₂+ cation. In 4c, triiodide anions have to behave as μ_2 -bridging soft donors towards two of the cations because no iodide anions are available. Average I • I contacts become slightly longer, when iodide anions have to coordinate more acceptor units. Compared with the chain structure of 2a, helical 3b contains an additional R₂PI₅ moiety as additional acceptor coordinated to the donor-jodide anion, whereas the chains of 4c contain one I₂ molecule per unit as an additional acceptor coordinated to the donor-iodide anion.

Acknowledgment. We thank Dr. Menzel and Prof. Brockner, Technische Universität Clausthal for their friendly cooperation in collecting vibrational spectra and the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg, Germany, and the Fonds der Chemischen Industrie, Frankfurt, Germany, for financial support.

Supporting Information Available: Tables S1-S15 listing crystallographic data, anisotropic displacement parameters, positional parameters of hydrogen atoms, and bond distances and angles (15 pages). Ordering information is given on any current masthead page.

IC950316L

⁽¹⁵⁾ Kudryatseva, L. I.; Fesbenko, N. G.; Povolotskii, M. I. Zh. Obshch. Khim. 1978, 48, 222.